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1 Introduction

Black-on-white images can be represented either as a bitmap or as a vector outline.
A bitmap represents an image as a grid of black or white pixels. A vector outline
describes an image via an algebraic description of its contours, typically in the form
of Bezier curves. The advantage of representing an image as a vector outline is that
it can be scaled to any size without loss of quality. Outline images are independent
of the resolution of any particular output device. They are particularly popular in the
description of fonts, which must be reproducible at many different sizes. Examples
of outline font formats include PostScript Type 1 fonts, TrueType, and Metafont. On
the other hand, most actual input and output devices, such as scanners, displays, and
printers, ultimately produce or consume bitmaps. The process of converting a vector
outline to a bitmap is called rendering. The converse process of turning bitmaps into
outlines is called tracing.

It is clear that no tracing algorithm can be perfect in an absolute sense, as there are
in general many possible outlines that can give rise to the same bitmap. The process
of tracing cannot be used to generate information that is not already present. On the
other hand, out of the many possible outlines that could give rise to a given bitmap,
clearly some are more plausible or aesthetically pleasing than others. For example, a
common way of rendering bitmaps at a high resolution is to draw each black pixel as
a precise square, which gives rise to “jaggies” or staircase patterns. Clearly, jaggies
are neither pleasant to look at, nor are they particularly plausible interpretations of
the original image. There is probably no absolute measure of what constitutes a good
tracing algorithm, but it seems clear that some algorithms give better results than others.

In this paper, we describe a tracing algorithm which is simple, efficient, and tends
to produce excellent results. The algorithm is called potrace, which stands for polygon
tracer. However, the output of the algorithm is not a polygon, but a smooth contour
made from Bezier curves. The name of the algorithm derives from the fact that it uses
polygons as an intermediate representation of images.

The potrace algorithm is designed to work well on high resolution images. Thus, a
typical application is to produce a vector outline from a company or university logo that
has been scanned at a high resolution. Another possible application is the conversion of
bitmapped fonts to outline fonts, if the original bitmapped fonts are available at a high
enough resolution. No tracing algorithm will work well on very small scales, such as
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Figure 1: Corner detection. (a) the original bitmap; (b) too many corners; (c) too few
corners; (d) good corner detection.

bitmaps for a typical 10pt screen font rendered at 75dpi. However, it will do a decent
job of tracing non-exact shapes, such as scanned handwriting or cartoon drawings, even
at relatively moderate resolutions.

Any good tracing algorithm has to perform several functions. Two of these func-
tions are to find the most plausible curve which approximates a given outline, and to
detect corners. There is a tradeoff between these two goals. If too many corners are
detected, the output will look like a polygon and will no longer be smooth. If too
few corners are detected, the output will look smooth but too rounded. An example is
shown in Figure 1.

Another important function performed by a tracing algorithm is to decide which
features of the bitmapped image are relevant, and which features are artifacts of the
scanning or rendering process. Those features which can be explained as artifacts
should be filtered out completely, because if even a slight hint of these features remains,
this can lead to visible imperfections in the output. Consider a straight line of positive,
but very small, slope. When rendered as a bitmap, such a line will lead to a staircase
pattern, where the individual steps of the stair could be far apart. No matter how far the
steps are apart, the output should be a straight line, or else it will be visually annoying.
This example also shows that tracing is not in general a local operation, i.e., it cannot
be based on merely looking at fixed-size neighborhoods of a point.

Although the potrace algorithm is very efficient, it produces nicer output than other
comparable algorithms. For instance, Figure 2 compares the output of potrace 1.0,
with its standard settings, to that of autotrace 0.31.1, another freely available tracing
program (see http://autotrace.sourceforge.net/). In addition to its superior graphical
output, potrace also compares favorably to autotrace in terms of speed and file size:
The bitmap in Figure 2 took potrace 0.27 seconds to process, compared to 1.69 seconds
for autotrace. Potrace produces an EPS file of 15790 bytes, compared to 39788 bytes
for autotrace.

2 Description of the potrace algorithm

The potrace algorithm transforms a bitmap into a vector outline in several steps. In the
first step, the bitmap is decomposed into a number of paths, which form the boundaries
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Figure 2: A detail from the seal of Stanford University; the original scanned image,
left; the output of autotrace, center; the output of potrace, right.

between black and white areas. In the second step, each path is approximated by an op-
timal polygon. In the third step, each polygon is transformed into a smooth outline. In
an optional fourth step, the resulting curve is optimized by joining consecutive Bezier
curve segments together where this is possible. Finally, the output is generated in the
required format. The following subsections describe each of these steps in more detail.

2.1 Paths

2.1.1 Path decomposition

We imagine our bitmapped image to be placed on a coordinate system such that the
corners (and not the centers) of each pixel have integer coordinates. Let us further
assume that the background color of the image is white, and the foreground color is
black. By convention, the parts of the coordinate plane that lie outside the bitmap
boundaries are assumed to be filled with white pixels.

We now construct a directed graph from our bitmap as follows. Let p be a point of
integer coordinates; such a point is adjacent to four pixels. The point is called a vertex
if the four pixels are not all of the same color. If v and w are vertices, we say that
there is an edge from v to w if the Euclidean distance between v and w is 1, and if the
straight line segment from v to w separates a black pixel from a white pixel, so that the
black pixel is to its left and the white pixel is to its right when traveling in the direction
from v to w. Let us call the resulting directed graph G with the vertices and edges just
described.

A path is a sequence of vertices {v0, . . . ,vn} such that there is an edge from v i to
vi+1, for all i = 0, . . . ,n−1, and such that all these edges are distinct. A path is called
closed if further, vn = v0. The length of a path is the number of edges in it, i.e., n. The
goal of path decomposition is to decompose the graph G into closed paths, i.e., to find
a set of closed paths in which each edge of G occurs exactly once.

Potrace uses the following straightforward method to decompose a bitmap into
paths. Start by picking a pair of adjacent pixels of different color. This can be accom-
plished, for instance, by picking the leftmost black pixel in some row. The two chosen
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Figure 3: The path extension algorithm

pixels meet at an edge; we orient this edge so that the black pixel is to its left and the
white pixel is to its right. This edge defines a path of length one. We then continue to
extend this path in such a way that each new edge has a black pixel on its left and a
white pixel on its right, relative to the direction of the path. In other words, we move
along the edges between pixels, and each time we hit a corner, we either go straight or
turn left or right, depending on the colors of the surrounding pixels as shown in Fig-
ure 3. We continue until we return to the vertex where we started, at which point we
have defined a closed path.

Every time we have found a closed path, we remove it from the graph by inverting
all the pixel colors in its interior. This defines a new bitmap, to which we apply the
algorithm recursively until there are no more black pixels left. The result is a set of
closed paths to be passed to the next phase of the potrace algorithm. The later phases
of the potrace algorithm look at each path independently.

2.1.2 Turn policies

In the situation in Figure 3(d), we have a choice of whether to take a left turn or a
right turn. This choice has no effect on the success or failure of the path decomposition
algorithm, as we will end up with a set of closed paths either way. However, the choice
does have an effect on the shape of the closed paths chosen.

In the potrace algorithm, the choice of whether to turn left or right is governed by a
turn policy, which can be defined via the --turnpolicy command line option. Pos-
sible turn policies are: left, which always takes a left turn, right, which always takes
a right turn, black, which prefers to connect black components, white, which prefers
to connect white components, minority, which prefers to connect the color (black or
white) which occurs least frequently within a given neighborhood of the current posi-
tion, majority, which prefers to connect the color which occurs most frequently, and
random, which makes a (more or less) random choice. The default turn policy is mi-
nority.

The reason that black and white are distinct turn policies from right and left is
that some pixel colors may get inverted during the course of the path decomposition
algorithm. The black and white policies look at the original pixel colors to determine
the direction of the turn.
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Figure 4: Examples of straight and non-straight paths. The vertices of the path are
shown as dots, and their 1/2-neighborhoods are shown as squares. (a), (b), and (d) are
straight, whereas (c) and (e) are not.

2.1.3 Despeckling

Despeckling can be performed by dropping all paths whose interior consists of fewer
than t pixels, for a given parameter s. The parameter t can be set with the --turdsize
command line option. The area of the interior of a path can be efficiently computed by
the formula

Area =

∫

ydx =

∫

yx′ dt.

2.2 Polygons

The second phase of the potrace algorithm has as its input a closed path as defined in
Section 2.1. The output is an optimal polygon which approximates this path. We start
by making precise what is meant by “optimal” and by “approximates”.

2.2.1 Straight paths

Given two points z0 = (x0,y0) and z1 = (x1,y1) in the coordinate plane, not necessar-
ily of integer coordinates, we define their max-distance to be d(z 0,z1) = max{|x1 −
x0|, |y1 − y0|}. Thus, the set of points of max-distance at most 1/2 from the point
(1/2,1/2) is just the pixel centered at (1/2,1/2).

For any two points a,b in the coordinate plane, let ab denote the straight line seg-
ment connecting a and b. Here a and b are not required to have integer coordinates.

Given a non-closed path p = {v0, . . . ,vn} as in Section 2.1, we say that a line
segment ab approximates the path if d(v0,a) 6 1/2, d(vn,b) 6 1/2, and for each
i = 1, . . . ,n−1, there exists some point c i on ab such that d(vi,ci) 6 1/2.

For a path p = {v0, . . . ,vn}, we say the direction at index i is vi+1 − vi, where
i = 0, . . . ,n−1. There are four possible directions: (0,1), (1,0), (0,−1), and (−1,0).
A path is called straight if it is approximated by some line segment, and not all four
directions occur in p.

Figure 4 shows some examples of straight and not-straight line segments. Note that
in this figure, the dots represent vertices in the path, which lie at the corners, not at
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the centers, of the pixels of the original bitmap. The squares shown are not pixels, but
rather neighborhoods of path points.

Figure 4(e) shows an example of a path which is not straight, although it is approx-
imated by some line segment. This is because all four directions occur in this path.

It is clear from the definition that if a path is straight, then so are all its subpaths. In
order to compute whether a given path is straight or not, we use the stronger fact that
straightness is a triplewise property, in the following sense. Suppose that a given path
p = {v0, . . . ,vn} does not use all four directions. Then p is straight if and only if for
all triples (i, j,k) of indices such that 0 6 i < j < k 6 n, there exists a point w on the
straight line through vi and vk such that d(v j,w) 6 1. This observation gives rise to a
naive straightness testing algorithm which is of cubic complexity in the worst case; it
proceeds simply by testing the above property for all triples (i, j,k).

In the potrace implementation, we use an optimization which allows us to find all
straight subpaths of a given closed path of length n in time O(n 2) in the worst case.
Briefly, the trick is to compute, for every pair (i, j), a constraint on the position of all
future vk’s. If i is fixed and j is increasing, it suffices to check the constraint once for
each j. Moreover, a constraint consist of at most two inequalities and can be updated
and checked in constant time.

2.2.2 Polygons

Now consider a closed path p = {v0, . . . ,vn}. Recall that vn = v0, so that this path
is of length n. Any pair of indices i, j ∈ {0, . . . ,n− 1} defines a subpath p i, j, which
is vi, . . . ,v j if i 6 j, or vi, . . . ,vn−1,v0, . . . ,v j if j < i. Let us write j ◦− i for the cyclic
difference between i and j, which is defined as j ◦−i = j− i if i 6 j, and j ◦−i = j− i+n if
j < i. Thus, the length of the subpath p i, j is precisely j ◦− i. In the following discussion,
we often assume tacitly that additions and subtractions are taken modulo n.

We now want to construct a polygon from the closed path p. We say that there is a
possible segment from i to j if j ◦− i 6 n−3 and the subpath p i−1, j+1 is straight in the
sense of the previous definition. In other words, a subpath corresponds to a possible
segment if it can be extended by one point in either direction and still be straight.
This peculiar “clipping” of a vertex from both ends of a straight path is important to
the overall quality of the output of the potrace algorithm; without it, there would be
strange behavior around the corners.

Note that any path of length 3 is straight in the sense of Section 2.2.1, thus it is
guaranteed that there is always a possible segment from i to i+1.

A polygon, for the purpose of this phase of the algorithm, is a sequence of in-
dices i0 6 i1 6 . . . 6 im−1 such that there is a possible segment from ik to ik+1 for
k = 0, . . . ,m−2, and from im−1 to i0. Figure 5 shows a path and two possible polygons
for it.

Note that the polygon segments shown in Figure 5 do not actually have to approx-
imate their corresponding subpaths in the sense of the red line segments of Figure 4.
They simply represent the fact that an approximating line segment exists.
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Figure 5: An optimal and a non-optimal polygon for a path

2.2.3 Penalties

Out of all possible polygons, we now want to find an optimal one. Our primary cri-
terion for optimality is the number of segments: a polygon with fewer segments is
considered more optimal than one with more segments. In Figure 5, the left polygon
has 14 segments, whereas the right one has 17 segments. Thus, the left polygon is more
optimal than the right one.

Among the polygons of the same number of segments, some are still more prefer-
able than others. We associate to every possible segment a penalty. Given a possible
segment from i to j, associate to it the straight line segment v iv j (shown in blue in
Figure 5). The penalty associated with the segment is equal to the Euclidean length
of viv j, times the standard deviation of the Euclidean distances of the path points from
viv j. In symbols, the penalty is equal to

Pi, j = |v j − vi| ·

√

√

√

√

1
j ◦− i+1

j

∑
k=i

dist(vk,viv j)2,

where dist(a,bc) denotes the Euclidean distance of a point from a straight line, and it
is understood that the sum counts from i to j in a cyclic manner. In words, the further
the path points stray from the segment, the greater the penalty.

The formula for Pi, j was chosen because it can be computed efficiently; namely, let
(x,y) = v j − vi and (x,y) = (vi + v j)/2. Then we have

Pi, j =
√

cx2 +2bxy+ay2,

where
a = E(x2

k)−2xE(xk)+ x2,
b = E(xkyk)− xE(xk)− yE(yk)+ xy,
c = E(y2

k)−2yE(yk)+ y2.

Here E(x2
k) = 1

j◦−i+1 ∑ j
k=i x2

k is the expected value of x2
k for k = i, . . . , j, and similarly

for the other “E” notations.
Note that the sums can be computed ahead of time, by making a table of sums of

the form ∑ j
k=0 qk, for each quantity qk to be summed. After making such tables, which
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takes time and space linear in the length of the given path, the above formula for P i, j

can be computed in constant time for each given i and j.

2.2.4 Optimal polygon

We can regard the given closed path p = {v0, . . . ,vn} as a directed graph with vertices
0, . . . ,n− 1, where there is an arrow from i to j if there is a possible segment from
i to j. To each sequence i0 → i1 → . . . → ik of arrows, we can associate a penalty,
which is an ordered pair (k,P), where k is the number of arrows in the sequence, and
P is the sum of their numerical penalties as discussed in Section 2.2.3. Penalties are
compared lexicographically, i.e., (k,P) is preferable to (k ′,P′) if either k < k′, or k = k′

and P < P′.
In this way, the problem of finding an optimal polygon reduces to the problem of

finding an optimal cycle in a directed graph. We use a variant of a standard graph-
theoretic algorithm to solve this problem efficiently. Once the graph has been com-
puted, an optimal cycle can be found in time O(nm), where n is the size of the input
path, and m is the length of the longest possible segment.

We remark that it is this optimization step which makes our algorithm non-local,
because we have to consider an entire path at once; each part of the optimal polygon
depends potentially on all the other parts. The previous phase, which computes a path
from a bitmapped image, and the following phase, which transforms a polygon into a
vector outline, are strictly local, in that they only look at a few adjacent points at a time.

2.3 From polygons to vector outlines

The final phase of the algorithm transforms the polygon obtained in the previous phase
into a smooth vector outline. In a preliminary step, we adjust the position of the vertices
of the polygon to fit the original bitmap as best as possible. In the main step, we
calculate corners and curves based on the lengths of adjacent line segments and the
angles between them.

2.3.1 Vertex adjustments

The output of the previous phase of the algorithm is a polygon {i 0, . . . , im−1} associated
to a closed path {v0, . . . ,vn}. We refer to the indices i0, . . . , im−1, as well as to their
associated points vi0 , . . . ,vim−1 , as the vertices of the polygon. As our polygon is cyclic,
we follow the usual convention of taking indices modulo m.

For the purpose of calculating penalties, we have placed the vertex i of the polygon
precisely at the corresponding path point v i, which is a point with integer coordinates
in the coordinate plane (i.e., located at a meeting point of four pixels in the original
bitmap). While this placement of vertices allowed us to calculate penalties efficiently,
it is not necessarily the optimal arrangement. We now associate to each vertex i k a
point ak in the coordinate plane, not necessarily of integer coordinates, such that a k is
near vik , and such that, for any two consecutive vertices i k and ik+1 of the polygon, the
resulting line segment akak+1 is reasonably close to the original subpath v ik , . . . ,vik+1 .
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Figure 6: A typical Bezier curve

We use the following algorithm for placing the points a k: for each consecutive pair
of vertices ik and ik+1, calculate the straight line Lk,k+1 which optimally approximates
the points vik , . . . ,vik+1 , in the sense that it minimizes the squares of their Euclidean
distances to the line. Now if ik−1, ik, and ik+1 are consecutive vertices, then we ideally
want to place ak at the intersection of Lk−1,k and Lk,k+1. However, we do not want ak

to be too far from the original vertex v ik . Thus, we let ak be a point in the unit square
with max-distance d(ak,vik ) 6 1/2 such that the sum of the square of the Euclidean
distances from ak to Lk−1,k and Lk,k+1 is minimal. In particular, if the intersection of
Lk−1,k and Lk,k+1 lies in this unit square, then we place ak at the intersection; else, we
place it at a point near vik which is “close” to the intersection.

Calculating ak is easy, as it simply amounts to minimizing a quadratic function
on a square. Also, the straight line Lk,k+1 is easily computed from the data points
vik , . . . ,vik+1 by using a standard method of “best fit”: this line passes through the
center of gravity (E(xk),E(yk)), where k = ik, . . . , ik+1, and its slope is given by the

eigenvector of the larger eigenvalue of the matrix

(

a b
b c

)

, where

a = E(x2
j)−E(x j)

2,

b = E(x jy j)−E(x j)E(y j),
c = E(y2

j)−E(y j)
2.

2.3.2 A class of Bezier curves

The purpose of this section is to make a simple, yet useful observation about Bezier
curves. Recall that a Bezier curve is given by four control points z 0,z1,z2,z3, and by the
parametric equation z = (1− t)3z0 +3t(1− t)2z1 +3t2(1− t)z2 + t3z3. For the purposes
of our analysis, we restrict ourselves to the case where the straight lines through z 0z1

and through z3z2 intersect at a point o (i.e., they are not parallel). Further, we restrict
ourselves to curves that are convex and change direction by less than 180 degrees; this
means that z1 lies between z0 and o, and that z2 lies between z3 and o. The situation
is as shown in Figure 6. By a linear transformation of the coordinate system, we can
assume that z0 = (−1,0), z3 = (1,0), and o = (0,1). Any Bezier curve of this particular
form is uniquely determined by two parameters α,β ∈ [0,1] such that z 1 = (−1+α,α)
and z2 = (1−β,β). Figure 7 gives an overview of the Bezier curves in this standardized
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Figure 7: A 2-parameter family of Bezier curves

form for all values of α and β that are multiples of 0.2. In the illustration, the control
points z1 and z2 are shown as red dots. We can see immediately from the illustration that
the Bezier curves in any particular horizontal row are visually almost indistinguishable,
except perhaps in the case when α or β are very close to 0. We will see that our
algorithm never produces Bezier curves with α and β very small, so that we can ignore
the latter possibility. It follows that we do not lose any interesting curves if we restrict
ourselves to the case α = β. This eliminates one degree of freedom from the set of
possible Bezier curves that we need to consider, and thus it simplifies our task of finding
optimal curves.

We should emphasize that we do not claim that all Bezier curves resemble the ones
shown in Figure 7. Rather, this is the case up to a linear transformation. Thus, if z 0 and
z3 are given, there are two degrees of freedom in the placement of o, and one additional
degree of freedom in the choice of α. By setting α = β, a fourth degree of freedom has
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(b) α = 0.65

bi–1

ai

bi

(c) α = 0.9
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Figure 8: Corner detection and smoothing

been eliminated.
An interesting fact is that the area enclosed between a Bezier curve of the above

form and the x-axis is equal to 3
10(2α + 2β−αβ), or 3

10 (4− (2−α)(2− β)). From
Figure 7, we find that two curves look very similar if they enclose areas of equal size.
Thus, we may approximate any curve with parameters α and β by a new curve with
equal parameters α′ = β′ = 2−

√

(2−α)(2−β).
Another interesting measure of a Bezier curve is the height of its highest point. In

case α = β, the highest point is reached when t = 1/2, and its y-coordinate is 3α/4.

2.3.3 Smoothing and corner analysis

The input to the last phase of the algorithm is the adjusted polygon from Section 2.3.1.
Suppose the vertices of this polygon are a0, . . . ,ak−1. Let b0, . . . ,bk−1 be the midpoints
of the edges of the polygon, i.e., b i = (ai + ai+1)/2. For each i, we now consider the
corner bi−1..ai..bi, and we decide whether to approximate it by a smooth curve, as
shown by the blue line in Figure 8(a)–(c), or by a sharp angle, as shown in Figure 8(d).

We proceed as follows. First, we draw a unit square centered at the point a i. Next,
we find the line Li which is parallel to bi−1bi, which touches the square around a i, and
which is as close as possible to the line bi−1bi. Let c be the point where Li intersects
bi−1ai, and let γ be the quotient of the lengths of b i−1c and bi−1ai. Let α = 4γ/3 and
consider the Bezier curve (of the kind discussed in Section 2.3.2) connecting b i−1 and
bi with parameter α. This curve is tangent to the three lines b i−1ai, Li, and aibi.

We use the parameter α just calculated to perform corner detection and to determine
the final curve from bi−1 to bi. There are two cases. If α 6 1, then we draw a smooth
Bezier curve at this vertex, as shown in Figure 8(a)–(c). If α > 1, there is no convex
Bezier curve connecting bi−1 and bi and tangent to Li. In this case, we have detected
a corner and we connect b i−1 and bi via two straight line segments that meet at ai, as
shown in Figure 8(d).

Corner detection can be customized via the so-called corner threshold parameter
αmax, which is configurable via the --alphamax command line option. If this param-
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eter is set, then a vertex will be rounded if α 6 αmax, and a corner if α > αmax. Thus,
smaller values of αmax lead to more corners, as in Figure 1(b), and larger values lead
to more rounded shapes, as in Figure 1(c). The default value is α max = 1. If αmax < 0,
then no smoothing is performed and the output of potrace is a polygon. If α max > 4/3,
then there will be no corners at all and the output is an everywhere smooth curve.

After corners have been detected, the value of α is further adjusted to be between
0.55 and 1. The lower bound α > 0.55 was chosen to prevent the curve from becoming
too “flat”. Allowing α < 0.55 often leads to strange looking images. The upper bound
of 1 ensures that the resulting Bezier curve segment is convex.

The value α = 0.55 was chosen because it tends to give a good approximation to a
circle in case the input is a regular polygon. It was chosen to be close to the theoretical
value

α0 =
4
3
(
√

2−1)≈ 0.552285,

which gives the best possible approximation by a Bezier curve segment to a quarter cir-
cle. More precisely, the Bezier curve with control points z0 = (1,0), z1 = (1,α0), z2 =
(α0,1), and z3 = (0,1) lies between the unit circle and the circle of radius 1.00027253.
Thus, this curve deviates from a true circle (of median radius) by less than 0.01363%.
Although this approximation of a quarter circle by a Bezier curve segment is well-
known, the exact bound is difficult to find in the literature; for instance, Faux and Pratt
[1, p.134] falsely give this value as 0.13%, due to an apparent typographical error,
whereas Knuth [2, p.14] gives it only as “less than 0.06%”.

Note that our corner detection algorithm has the following property: Corners are
favored both by sharp angles and by long segments. Thus, we detect a corner if two
short segments meet at a very sharp angle, and also if two very long segments meet at
a slight angle.

2.4 Curve optimization

The output of the previous phase of the potrace algorithm, after corner analysis and
smoothing, is a curve consisting of Bezier curve segments and straight line segments.
The resulting curve is very close to the final output of potrace. However, there is an
optional last phase of the algorithm, the curve optimization phase, which attempts to
further optimize the curve by joining adjacent Bezier curve segments together if this is
possible. Curve optimization only makes very small changes to the shape of the final
curve; small enough that the difference is not normally visible. However, the resulting
curve consists of fewer segments, and thus can be represented more compactly in the
final output of the program. If curve optimization is not desired, it can be disabled by
giving the --longcurve command line option to potrace.

The curve optimization algorithm is based on a few simple ideas. First, we only
attempt to join adjacent curved segments, never straight line segments or corners. Sec-
ond, we only join adjacent curve segments which agree in convexity, i.e., they all curve
to the right or all to the left. Third, we only join adjacent curve segments if the to-
tal change in direction is less than 179 degrees. (We do not quite allow 180 degrees,
in order to avoid unbounded quantities in the computations below). This leaves us to
consider a sequence of segments like the one shown in blue in Figure 9.
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Figure 9: Curve optimization

The question is whether we can find a single Bezier curve from b 0 to bn which
approximates the given sequence of shorter Bezier curves. Suppose there was such a
curve C. Clearly, C would have to be tangent to b0a1 and anbn. We can thus find the
point O where b0a1 and anbn intersect. Following our discussions in Section 2.3.2, this
leaves only one degree of freedom in the curve to be considered, namely the parameter
α. If we impose the further requirement that the area enclosed by the curve C should
be equal to the total area enclosed by the original curve segments and the line b 0bn,
then this uniquely determines the parameter α. Recall from Section 2.3.2 that the areas
in question are easily calculated. This leaves us with a unique Bezier curve C which is
a candidate for approximating the given segments. It is shown in red in Figure 9.

It remains to check whether C actually is an acceptable approximation to the given
curve segments, and if yes, to assign it a numerical penalty. We do this by a simple
tangency check. For each i = 1, . . . ,n−1, we find the point z i on C where the tangent
to C is parallel to aiai+1. We let di be the Euclidean distance of zi to the line segment
aiai+1. Further, for each i = 1, . . . ,n, we find the point z ′i on C where the tangent to C is
parallel to bi−1bi. We let d′

i be the Euclidean distance of z′i to the line segment Li define
in Section 2.3.3, counted positive if z ′i is on the same side of Li as ai, and otherwise
negative.

We say that the approximation is acceptable if all d i 6 ε, d′
i > −ε, and the orthog-

onal projection of zi onto the line aiai+1 lies between ai and ai+1. Here, the value ε is
a constant called the tolerance of the curve optimization algorithm; it is pre-set to 0.2,
and it can be altered via the --opttolerance option.

For an acceptable curve, we define its penalty to be the sum of the squares of
all the distances di and d ′

i . Finally, we use a standard graph-theoretic algorithm for
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shortest path search to decompose a given sequence of curve segments into acceptable
approximations, optimizing first the number of segments, then the total penalty.

2.5 Output generation

2.5.1 Scaling and rotation

The potrace algorithm has produced a family of curves, each of which consists of
Bezier segments and straight line segments. The endpoints and control points of these
segments are arbitrary points in the coordinate plane. Depending on the chosen back-
end and parameters, potrace now performs a linear transformation (to scale the image
to the desired size, and possibly to rotate it).

2.5.2 Redundancy coding

When using one of the PostScript backends (PostScript or EPS), potrace uses a very
compact numerical format to represent Bezier curves in the output. To do so, it takes
advantage of redundancies in the curve parameters. In principle, 6 parameters are
needed to describe each Bezier curve segment (1 endpoint and 2 control points). How-
ever, by eliminating redundancies in these parameters, potrace can encode each seg-
ment by using only 3 to 4 real numbers. One degree of freedom can be eliminated
because we only use curves with α = β, see Section 2.3.2. Another degree of freedom
can be eliminated because the point b i always lies on the line segment aiai+1, see Sec-
tion 2.3.3. A third degree of freedom can often be eliminated because b i is actually
half way between ai and ai+1 for those curve segments which were not affected by the
curve optimization step of Section 2.4.

This redundancy coding of Bezier curves is only performed in the PostScript back-
end, because it takes advantage of the macro capabilities of the PostScript language.
Redundancy coding can be turned off with the --longcoding option, resulting in
longer, but more readable output.

2.5.3 Quantization

For most backends, the final coordinates, which are real numbers, are quantized, which
means they are rounded to the closest 1/10 pixel. Thus, the number of decimal digits
needed to represent each coordinate is reduced by effectively placing all control points
on a very fine grid. The coordinates of the points can then be output as integers. The
default quantization constant of 1/10 usually gives good results; however, it is config-
urable via the --unit command line option.

3 A complete example

A complete example of a run of the potrace algorithm is shown in Figure 10. Part (a)
shows the original bitmap. In part (b), note how the default “minority” turn policy
keeps the black outlines along the outside of the figure connected, while at the same
time keeping the white outlines inside the figure’s hair connected as well. Also note
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Figure 10: A complete example. (a) the original bitmap, (b) path decomposition and
optimal polygon, (c) vertex adjustment, corner analysis, and smoothing, (d) curve op-
timization, (e) the final output.
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that a speckle of size 1, inside the figure’s hair, has been removed. Part (b) also shows
the optimal polygon calculated for each path component. Part (c) shows the adjusted
polygon vertices, relative to the underlying bitmap which is shown in grey. Each vertex
is surrounded by its unit square. Also, the line segments L i from Section 2.3.3 are
shown, and the parameter α is written inside the unit square of each vertex; this is best
seen by looking at the page at a very high magnification in Acrobat Reader. Corner
analysis is performed at this step; note that for this particular bitmap, only very few
corners are detected. Generally, corner analysis works better at higher resolutions.
Smoothing is then performed; the resulting Bezier curve segments and line segments
are shown in blue. Part (d) shows the result of curve optimization; the original curve
is shown in blue, and the optimized curve is shown in red. Red dots indicate the new
segment boundaries. Note that the number of segments has been reduced from 112 to
68, or by 40%. The final result of the algorithm is shown in Part (e).

Debugging output in the style of Figure 10(b)–(d) can be produced by giving the
command line options -d1 through -d3 to potrace.
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